FLOOD MAPPING PROJECT: PEACHLAND AND TREPANIÈRE CREEKS
FINAL REPORT
DECEMBER 2019
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>iv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>2 Basis for the Project</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Regional Floodplain Management Plan</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Professional Practice Guidelines</td>
<td>2-1</td>
</tr>
<tr>
<td>3 Project Creeks</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Watershed Descriptions</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Flood Mechanism and Timing</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3 Reach Descriptions</td>
<td>3-5</td>
</tr>
<tr>
<td>4 Methods and Analysis Results</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Background Review</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Field Reconnaissance and Surveying</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Survey and Channel Vertical Adjustments</td>
<td>4-1</td>
</tr>
<tr>
<td>4.4 Hydrological Analysis</td>
<td>4-2</td>
</tr>
<tr>
<td>4.5 Hydraulic Analysis</td>
<td>4-9</td>
</tr>
<tr>
<td>5 Flood Mapping</td>
<td>5-1</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>6-1</td>
</tr>
<tr>
<td>7 Closure</td>
<td>7-1</td>
</tr>
<tr>
<td>8 References</td>
<td>8-1</td>
</tr>
<tr>
<td>Appendix A - Flood Mapping Assurance Statement</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4-1</td>
<td>PCIC Plan2Adapt Summary of Projected Changes to 2080’s from 1961-1990 Baseline Period</td>
<td>4-3</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Maximum Daily Flow Estimates</td>
<td>4-6</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>Peak Instantaneous Flow Estimates</td>
<td>4-6</td>
</tr>
<tr>
<td>Table 4-4</td>
<td>WSC Hydrometric Station on Okanagan Lake</td>
<td>4-6</td>
</tr>
<tr>
<td>Table 4-5</td>
<td>Summary of Lake Elevations Applied to Reach 1 and Reach 2</td>
<td>4-8</td>
</tr>
<tr>
<td>Table 4-6</td>
<td>Summary of Hydraulic Model Scenarios for Reach 1 and Reach 2</td>
<td>4-13</td>
</tr>
<tr>
<td>Table 4-7</td>
<td>Summary of Hydraulic Model Scenarios for Trepanier Creek Reach 3</td>
<td>4-13</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>List of Flood Maps</td>
<td>5-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1-1 Location of Reaches included Within the Project 1-2
Figure 2-1 Regional Floodplain Management Framework Phases 2-1
Figure 3-1 Snow Water Equivalent for Brenda Mine (Station 2F18P) – 1992 to 2019 3-1
Figure 3-2 Peachland Creek Watershed Overview 3-3
Figure 3-3 Trepanier Creek Watershed Overview 3-4
Figure 4-1 Example of LiDAR Channel Elevation Adjustment (elevation and distance units are in m). 4-2
Figure 4-2 Elevation Duration Curve for Okanagan Lake (WSC 08NM083) 4-7
Figure 4-3 Frequency Analysis Chart for Okanagan Lake WSC 08NM083 (CGVD1928) 4-8
Figure 4-4 GeoHEC-RAS Model Schematic for Peachland Creek Reach 1 4-10
Figure 4-5 GeoHEC-RAS Model Schematic for Trepanier Creek Reach 2 4-11
Figure 4-6 GeoHEC-RAS Model Schematic for Trepanier Creek Reach 3 4-12
Figure 4-7 Trepanier Creek Reach 3 Stop Logs Observed on September 27, 2019. 4-14
Figure 5-1 Peachland Creek Reach 1, 20-Year – No Freeboard 5-2
Figure 5-2 Peachland Creek Reach 1, 20-Year – Minimum and Additional Freeboard 5-3
Figure 5-3 Peachland Creek Reach 1, 200-Year – No Freeboard 5-4
Figure 5-4 Peachland Creek Reach 1, 200-Year – Minimum and Additional Freeboard 5-5
Figure 5-5 Trepanier Creek Reach 1, 20-Year – No Freeboard 5-6
Figure 5-6 Trepanier Creek Reach 1, 20-Year – Minimum and Additional Freeboard 5-7
Figure 5-7 Trepanier Creek Reach 2, 200-Year – No Freeboard 5-8
Figure 5-8 Trepanier Creek Reach 2, 200-Year – Minimum and Additional Freeboard 5-9
Figure 5-9 Trepanier Creek Reach 3, 20-Year – No Freeboard 5-10
Figure 5-10 Trepanier Creek Reach 3, 20-Year – Minimum and Additional Freeboard 5-11
Figure 5-11 Trepanier Creek Reach 3, 200-Year – No Freeboard 5-12
Figure 5-12 Trepanier Creek Reach 3, 200-Year – Minimum and Additional Freeboard 5-13
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Associated Engineering (B.C.) Ltd.</td>
</tr>
<tr>
<td>CEPF</td>
<td>Community Emergency Preparedness Fund</td>
</tr>
<tr>
<td>CGVD1928</td>
<td>Canadian Geodetic Vertical Datum 1928</td>
</tr>
<tr>
<td>CGVD2013</td>
<td>Canadian Geodetic Vertical Datum 2013</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>EGBBC</td>
<td>Engineers and Geoscientists British Columbia</td>
</tr>
<tr>
<td>EGL</td>
<td>Energy Grade Line</td>
</tr>
<tr>
<td>EMBC</td>
<td>Emergency Management BC</td>
</tr>
<tr>
<td>FPPR</td>
<td>Forest Planning and Practices Regulation</td>
</tr>
<tr>
<td>FRPA</td>
<td>Forest and Range Practices Act</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>PGS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>m³/s</td>
<td>Cubic Metre per Second</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>MoTI</td>
<td>Ministry of Transportation and Infrastructure</td>
</tr>
<tr>
<td>NRC</td>
<td>Natural Resources Canada</td>
</tr>
<tr>
<td>OBWB</td>
<td>Okanagan Basin Water Board</td>
</tr>
<tr>
<td>PCIC</td>
<td>Pacific Climate Impacts Consortium</td>
</tr>
<tr>
<td>PFRR</td>
<td>Preliminary Flood Risk Rating</td>
</tr>
<tr>
<td>QP</td>
<td>Qualified Professional</td>
</tr>
<tr>
<td>RDCO</td>
<td>Regional District of Central Okanagan</td>
</tr>
<tr>
<td>RFMP</td>
<td>Regional Floodplain Management Plan</td>
</tr>
<tr>
<td>UBCM</td>
<td>Union of BC Municipalities</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

A flood is a condition where a watercourse overtops its natural or artificial boundaries and covers land not normally occupied by water. When a flood occurs, the result can be hazardous to people, the environment, infrastructure, private property, and cultural and historical resources. Recent flooding events occurred in 2017 and 2018 in areas around the Central Okanagan. These events caused physical damages to stream channels, lake foreshores, property, and infrastructure adjacent to these areas.

Due to the potential for flooding, the Regional District of Central Okanagan (RDCO) was interested in completing a flood mapping study of select creeks (the Project). The RDCO secured funding from the Union of BC Municipalities (UBCM) for the Project. This was under the Community Emergency Preparedness Fund (CEPF) within the Flood Risk Assessment, Mapping and Mitigation Planning Program.

Associated Engineering (B.C.) Ltd. (AE) was engaged to complete the Project. The RDCO and AE collaborated prior to beginning the Project and reviewed candidate creeks. McDougall, Powers, Peachland, and Trepanier Creeks were considered because these were all identified as critical in the region. Since the City of West Kelowna was already completing flood risk assessments and mitigation plans for McDougall and Powers Creeks, it was decided that selected channel reaches of Peachland and Trepanier Creeks would be studied.

The three channel reaches selected are shown in Figure 1-1. For the purposes of the Project, the selected channel reaches are identified as follows (see Section 2 for further Reach descriptions):

Reach 1: Peachland Creek (approximately 400 m long reach to the mouth at Okanagan Lake);
Reach 2: Trepanier Creek (approximately 900 m long reach to the mouth at Okanagan Lake); and
Reach 3: Trepanier Creek (approximately 600 m long reach adjacent to the District of Peachland water intake).

It is understood that there are currently no flood risk assessments or flood mitigation efforts on Peachland or Trepanier Creeks. Therefore, the RDCO and District of Peachland will benefit from the Project to support flood planning. The Project can inform floodplain management decisions, or it can be advanced to include flood hazard and flood risk mapping. It is noted that the District of Peachland is currently working to complete dam breach inundation studies from upland reservoirs, but results from that work were not available at the time of completing the Project.

AE submitted a proposal on July 5, 2019 with an addendum added on July 16, 2019. The RDCO awarded the Project and an Agreement was completed on August 8, 2019. The technical scope of work for the Project included the following tasks, which align with the required stages to complete a flood mapping project (EGBC 2017):

• Field reconnaissance and surveying;
• Hydrological analysis;
• Hydraulic modelling and analysis; and
• Flood mapping.
2 BASIS FOR THE PROJECT

2.1 Regional Floodplain Management Plan

The RDCO and AE completed a Regional Floodplain Management Plan (RFMP) in 2016 (AE 2016). The RFMP is a tool to assist the RDCO and municipalities in identifying, assessing, and managing flood risks. The RFMP was preceded by a Regional Floodplain Management Framework (Clark Geoscience 2014) that consists of three sequential phases outlined in Figure 2-1. The Project fits under Phase 2.

Peachland and Trepanier Creeks were assigned a Preliminary Flood Risk Rating (PFRR) of High in the RFMP (AE 2016). This PFRR indicates that risk to infrastructure and/or the public is unacceptable and that there is a need for further risk assessment. The Project supports an assessment of potential flooding at each Reach.

2.2 Professional Practice Guidelines

In 2017, Engineers and Geoscientists British Columbia (EGBC) published Professional Practice Guidelines for flood mapping projects in BC (EGBC 2017). The guidelines were developed by EGBC and the Ministry of Transportation and Infrastructure (MoTI) – Emergency Management BC (EMBC). The guidelines provide ‘best practices’ so that professionals completing flood mapping work do so in a consistent manner.

The EGBC (2017) guidelines were followed in completing the Project. Accordingly, the guidelines have a Flood Mapping Assurance Statement and it is included in Appendix A of this report. The Flood Mapping Assurance Statement is to be signed and sealed by a Qualified Professional (QP) who has appropriate training and experience to complete the flood mapping work. AE’s QP for the Project is Geoffrey Cahill, P.Eng.

The EGBC (2017) guidelines describe three categories of flood mapping:

- Inundation Mapping
- Flood Hazard Mapping
- Flood Risk Mapping

Inundation mapping is the first category of a flood mapping project. Flood hazard and flood risk mapping involve more complex study and are built upon results of inundation mapping. The Project only includes inundation mapping. If the RDCO or District of Peachland want to do further work, the inundation mapping could be expanded to include analysis of flood hazards and flood risks.
3 PROJECT CREEKS

3.1 Watershed Descriptions

Peachland and Trepanier Creeks are both Community Watersheds located on the west side of the Okanagan Valley. Community Watersheds are defined and regulated under the *Forest and Range Practices Act* [SBC 2002] Chapter 69 and *Forest Planning and Practices Regulation* (BC Reg. 14/2004). These are important designations for protecting water quality for the benefit of water users.

Peacland and Trepanier Creeks are tributary systems and drain in an eastern direction to Okanagan Lake. Both watersheds are considered gently sloping, but they exhibit gentle-over-steep terrain that is common to the Okanagan Basin. The creeks are deeply entrenched into the Interior Plateau and form narrow valleys. As they flow closer to Okanagan Lake the channels are incised into the valley wall and terrace above the District of Peachland administrative boundary. Within the administrative boundary, the channels flow over alluvial fans into Okanagan Lake.

Peachland and Trepanier Creeks are snowmelt-dominated hydrological systems. This means that annual peak streamflows are generated during freshet. The watersheds accumulate snow over the winter period; particularly in the higher elevation headwaters. As the spring period advances and temperatures warm, the snowpack begins to melt which results in increased runoff. As an example of this, Figure 3-1 provides a chart from the BC River Forecast Centre for the Brenda Mine Station (No. 2F18P, Elevation 1,460 m) that shows recent and historical snow water equivalent values representative for the watersheds. It is historically evident that the snowpack recedes in April and May, which drives the timing of peak streamflows in Peachland and Trepanier Creeks.

![Figure 3-1: Snow Water Equivalent for Brenda Mine (Station 2F18P) - 1992 to 2019](image)
3.1.1 Peachland Creek Watershed

Additional watershed characteristics of Peachland Creek are noted below, with reference to Figure 3-2:

- Peachland Creek watershed is located between Trepanier Creek (to the north) and Trout Creek (to the south).
- The watershed drains an approximate area of 148 km².
- The Provincial Freshwater Atlas lists Peachland Creek as a 4th order system.
- The median elevation is approximately 1,260 m.
- The watershed is primarily forested; there is forest harvesting and resource roads in the watershed.
- Peachland Lake Dam (Very High Consequence) and Glen Lake Dam (Significant Consequence) are in the watershed.
- The District of Peachland is the major water user and has a water intake.
- There are numerous Water Licences held, including some for storage purposes.
- Greata Creek is the largest tributary system to Peachland Creek.

3.1.2 Trepanier Creek Watershed

Additional watershed characteristics of Trepanier Creek are noted below, with reference to Figure 3-3:

- Trepanier Creek is located between Powers Creek (to the north) and Peachland Creek (to the south).
- The watershed drains an approximate area of 260 km².
- The Provincial Freshwater Atlas lists Trepanier Creek as a 5th order system.
- The median elevation is approximately 1,228 m.
- Highway 97 (Okanagan Connector) bisects the watershed.
- The watershed is primarily forested; there is forest harvesting and resource roads in the watershed.
- Brenda Mine is located in the headwaters and the mine site is operated as a closed system. Water is released from the mine site each year generally during the late spring and summer periods.
- The District of Peachland is the major water supplier and has a water intake (located at Reach 3).
- There are numerous Water Licences held, including some for storage purposes.
- MacDonald, Lacoma, and Jack Creeks are the largest tributary systems to Trepanier Creek.

3.2 Flood Mechanism and Timing

As noted in Section 2.1, peak streamflows in Peachland and Trepanier Creeks are generated during freshet. This is influenced by several possible factors that control the magnitude of freshet, such as:

- Groundwater levels and antecedent moisture in the soil layers
- Available storage in dam reservoirs and operating rules by the dam owners.
- The duration of the winter season and the depth of snowpack accumulation.
- The timing of spring season when temperatures increase, and how rapidly the temperatures rise.
- How much rainfall occurs during the spring season.
- Occurrence of an intense rainfall event on melting snowpack.

1 https://www2.gov.bc.ca/gov/content/data/geographic-data-services/topographic-data/freshwater
FIGURE 3-3: TREPANIER CREEK
WATERSHED OVERVIEW

Peachland and Trepanier Creeks
Flood Mapping

PROJECT NO.: 2019-2671
DATE: Dec. 2019
DRAWN BY: DA
Based on review of the historical Water Survey of Canada (WSC) hydrometric records, freshet in Trepanier Creek has occurred between late-April to early-June. Peak streamflows typically occur during the month of May. The record for Peachland Creek is not as long compared to Trepanier Creek, but the records typically show that peak streamflows in Peachland Creek occur within a few days of peak streamflows in Trepanier Creek.

3.3 Reach Descriptions

3.3.1 Reach 1 – Peachland Creek at Okanagan Lake

Peachland Creek flows into Okanagan Lake near the intersection of Highway 97 and Hardy Street. Reach 1 is on the Peachland Creek alluvial fan. Hardy Street is parallel to the channel. Highway 97 extends along the foreshore of the lake across the alluvial fan.

There are two road crossings along Reach 1: Highway 97 and Renfrew Road. This area is an access point to Hardy Falls Park and within the park there are pedestrian trail bridges crossing the channel. The apex of the alluvial fan is near the first pedestrian trail bridge. It is noted that the area just downstream of this bridge had recent flood-related channel erosion (2017 and 2018 freshet events). Within Hardy Falls Park, the channel was enhanced for salmon and trout spawning habitat. Weirs and gravel platforms were installed (date unknown; estimate during the 1990's).

There are mobile home properties located on the alluvial fan. Between Renfrew Road and Highway 97 there are mobile home units located near the left bank of the channel. The channel and right bank floodplain up to Hardy Street are within Hardy Falls Park. South of Hardy Street there are additional mobile home properties.

3.3.2 Reach 2 – Trepanier Creek at Okanagan Lake

Trepanier Creek flows into Okanagan Lake at Beach Avenue in the District of Peachland. Reach 2 is on the Trepanier Creek alluvial fan. Beach Avenue extends along the foreshore of Okanagan Lake. Highway 97 crosses the channel 240 m upstream of Beach Avenue. The highway alignment is elevated, and the bridge structure is substantially higher than the creek.

The Trepanier Creek alluvial fan area is larger than Peachland Creek’s. There is mixed land use on the alluvial fan, including: Peachland Elementary School, single and multi-family properties, mobile homes, park/trail, and a commercial shopping centre. Upstream of Highway 97 there are properties that have developed or landscaped up to the channel banks.

3.3.3 Reach 3 – Trepanier Creek at District of Peachland Water Intake

Reach 3 is located on the Trepanier Bench / Paradise Valley area off Trepanier Road. This Reach is not located within the District of Peachland administrative boundary, but the District of Peachland operates a water intake system on the creek. This is one of the main water supply sources for the District of Peachland. Highway 97C (Okanagan Connector) is parallel to Reach 3. The highway is cut into the valley hillside south, and upgradient of the channel.

Trepanier Creek has been altered to divert and supply water. The natural channel flows into a wide and deep pool that is approximately 100 m long. The depth of this pool is regulated by stop logs that can be height-adjusted. Water is diverted into two settling ponds and then into the District of Peachland water system. The residual flow spills over the stop logs and a large concrete weir where it returns to the natural channel.
4 METHODS AND ANALYSIS RESULTS

The methods used to complete the Project are described below. This includes description of important steps or assumptions that were necessary and the associated results.

4.1 Background Review

Relevant background information was collected and reviewed. This included information from the RDCO, District of Peachland, MoTI, WSC, Okanagan Basin Water Board (OBWB), and online sources. In addition, geospatial data was reviewed from the RDCO and GeoBC.

4.2 Field Reconnaissance and Surveying

Field reconnaissance and channel surveying were completed on September 25, 2019 (Peachland Creek) and September 27, 2019 (Trepanier Creek). This work included:

- Observing the channel at each Reach;
- Observing the floodplain and its connection to the channel at each Reach;
- Photo-documentation; and
- Topographic and bathymetric surveying with GPS/GNSS (Can-Net) and Total Station.

4.3 Survey and Channel Vertical Adjustments

4.3.1 Vertical Reference Systems

The OBWB provided 2018 LiDAR survey data for the Project. This data is referenced to Canadian Geodetic Vertical Datum 2013 (CGVD2013), which was released by Natural Resources Canada (NRC) to modernize Canada’s vertical reference system. CGVD2013 is a different vertical datum compared to Canadian Geodetic Vertical Datum 1928 (CGVD1928). It is noted that the elevation difference between the two datums is not constant and varies spatially. These vertical reference systems have different methodology to determine their datum:

- CGVD2013 is an equipotential surface for the mean sea level across North America.
- CGVD1928 is a tidal datum defined by mean water elevation at five tidal gauges across Canada.

Data adjustments were required due to the difference in the vertical reference system. These adjustments were identified based on queries from Natural Resources Canada GPS-H online tool\(^2\). The following adjustments were completed with the GPS/GNSS survey data:

- Reach 1 – site survey data was raised 0.22 m in elevation.
- Reach 2 – site survey data was raised 0.21 m in elevation.
- Reach 3 – no adjustment (Total Station survey only).

4.3.2 LiDAR Data

LiDAR surveys do not typically penetrate through water surfaces. Therefore, LiDAR data may not accurately reflect the channel bed (bathymetry) at every location along each Reach. To rectify this data gap, channel surveying was completed to capture thalweg elevations and representative cross sections along each Reach. This field data was

analyzed to support elevation adjustments along the channel beds. LiDAR and survey channel cross-sections were compared, and the following elevation adjustments were made to the LiDAR data:

- Reach 1 – channel bed was lowered 0.7 m
- Reach 2 – channel bed was lowered 0.8 m
- Reach 3 – channel bed was lowered:
 - 0.3 m upstream of the water intake area
 - 0.8 m at the water intake area
 - 0.3 m downstream of the water intake area

An adjustment example is shown in Figure 4-1 for a Trepanier Creek channel cross-section along Reach 2. The red line is the LiDAR surface, which identifies the bank locations and the water surface in the creek. The blue line is the field survey result at the same location. The green line is the adjusted channel bed for the cross-section. Hydraulic modelling was completed based on the adjusted green line cross section.

4.4 Hydrological Analysis

With the lack of active hydrometric stations (and/or stations with sufficient record length) on Peachland and Trepanier Creeks, the Index Flood Method was selected to estimate peak instantaneous and mean daily maximum streamflows (design streamflows). This method is consistent with the estimation procedure recommended by Reksten (1987) for estimating peak streamflows at ungauged locations in BC. The intent of the hydrologic analysis completed herein is to provide reliable and consistent estimates of design streamflows (i.e., 5-, 10-, 20-, 50-, 100-, and 200-year hydrological return periods) for each watercourses at the respective Reach locations.

4.4.1 Climate Change

Changing climate conditions will have an impact on flooding, including inter-related impacts to rainfall, snowpack, temperature, and forest disturbances (e.g., wildfire and insects) (EGBC 2017). These changes will have an influence on watershed processes in Peachland and Trepanier Creeks. Thus, it is now considered standard engineering practice to include an assessment of climate change impacts for flood hazard projects.
The Pacific Climate Impacts Consortium (PCIC) provides information on climate change and variability. One of the available tools is Plan2Adapt, which generates information to describe future climate conditions over different time periods. As an example of possible impacts, the 2080’s time period (2070-2099) was selected for the Central Okanagan region. Results from PCIC are listed in Table 4-1. These projections indicate that annual temperatures will increase, there will be less snowfall, and more winter rainfall. This could result in a shift in the current hydrological regime for the watersheds, with the magnitude of the shifts being dependent on particular future emissions (Representative Concentration Pathway) scenario, climate model choice, future timeframe, and downscaling scenario. Generally, however, it should be expected that the timing of freshet will be earlier and winter streamflow will be more variable. In addition, the frequency and magnitude of flood events has the potential to increase.

Table 4-1

<table>
<thead>
<tr>
<th>Climate Variable</th>
<th>Season</th>
<th>Ensemble Median</th>
<th>10th to 90th Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Temperature</td>
<td>Annual</td>
<td>+2.9°C</td>
<td>+1.7°C to +4.6°C</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Annual</td>
<td>+8%</td>
<td>+2% to +15%</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>-12%</td>
<td>-34% to +4%</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>+11%</td>
<td>+3% to +27%</td>
</tr>
<tr>
<td>Snowfall</td>
<td>Winter</td>
<td>-22%</td>
<td>-44% to -9%</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>-77%</td>
<td>-89% to -17%</td>
</tr>
</tbody>
</table>

In addition to the generalized results from PCIC, statistical trend analyses were completed on mean annual peak daily streamflow values for WSC data (i.e., Mann Kendall test). No statistically significant trends were identified in the results. However, it is recognized that historical trends may not be reflective of future long-term changes. To allow for consideration of potential climate change impacts within the scope of this project, EGBC (2018) guidelines were adopted for assessing floods in a changing climate. A 10% upward scaling factor was applied to the design streamflows for each return period. This was applied under the assumption that this is sufficient to account for future climate change impacts in Peachland and Trepanier Creeks.

4.4.2 Index Flood Method

The Index Flood Method is commonly used to estimate peak streamflows at ungauged locations for watersheds larger than 10 km² in Canada (National Research Council of Canada 1989; Coulson 1991) and is consistent with the methods presented in the Community Watershed Guidebook (MOF/MELP 1996) that is used in the forest sector for estimating design streamflows for sizing bridges and culverts on forestry roads.

Relevant data from nearby gauged locations are required to derive an appropriate model for calculating the annual maximum daily streamflow (i.e., the index flood). Ratios of higher return periods (e.g., 200-year) annual maximum daily streamflow to the index flood are determined. Finally, an average ratio of the maximum instantaneous to the peak maximum streamflow is determined.

The peak instantaneous streamflow is generally adopted as the basis for the design peak flow. In the present application of the Index Flood Method, one standard deviation (68%) confidence intervals are provided. The confidence interval is based upon the combined standard errors of the index flood, the instantaneous-to-daily streamflow ratio, and the ratios of selected return period streamflows to the index flood.
4.4.3 Selection of Candidate Hydrometric Stations

Historic WSC hydrometric records are available for Peachland and Trepanier Creeks near the respective Reach locations as follows:

- **Peachland Creek at the Mouth** (WSC No. 08NM159; Period of record = 1969-1982);
- **Trepanier Creek near Peachland** (WSC No. 08NM041; Period of record = 1919-2013); and
- **Trepanier Creek at the Mouth** (WSC No. 08NM155; Period of record = 1969-1981).

However, upon further review of the available hydrometric records, it was identified that insufficient records to calculate design streamflows were available for Reach 1 and 2. Alternatively, the available hydrometric records from WSC No. 08NM041 were sufficient for Reach 3.

Following the above, it was decided that for Trepanier Creek, hydrometric records available for WSC No. 08NM041 would be used to support the estimation of the design streamflows for Reach 2 and 3. However, due to water releases from Brenda Mines into Trepanier Creek during peak streamflow periods, and the history of MacDonald Creek (i.e., tributary to Trepanier Creek) diversions into Peachland Creek, WSC No. 08NM041 records were deemed insufficient to use as a surrogate to estimate Peachland Creek streamflows at Reach 1. Therefore, **Camp Creek at the Mouth near Thirsk** (WSC No. 08NM134; Period of record = 1965-2015) was used as the candidate regional hydrometric station to support streamflow estimates for Peachland Creek. WSC No. 08NM134 is in the adjacent watershed (i.e., Trout Creek) to Peachland Creek, has similar watershed characteristics, is located within the same provincial hydrologic zone, and is expected to experience similar climatic patterns.

Data for WSC No. 08NM041 and 08NM134 were used to calculate the mean annual maximum daily unit streamflow for the respective periods of record. The estimates were then adjusted to a long-term mean based on the streamflow records of **Kettle River near Laurier** (WSC No. 08NN012), for which a continuous record extends from 1950-2017. This adjustment reduces the effect of the individual hydrometric station’s period of record and the adjusted mean annual maximum daily unit streamflow for WSC No. 08NM041 and 08NM134 are considered the “index floods”.

4.4.4 Return Period and Instantaneous-to-Daily Ratios

For WSC No. 08NM041 and 08NM134, the 5-, 10-, 20-, 50-, 100-, and 200-year return period mean daily maximum unit streamflows were calculated. Four different distribution types (Pearson Type III, Log Pearson Type III, Log Normal, and Gumbel) were fitted to the data using the BC Ministry of Environment, Lands, and Parks (MELP) Flood Frequency Analysis Program (Version 1.1). The general procedure for estimating individual return periods from the MELP program involves visually inspecting and assessing the goodness-of-fit for each distribution, with poor fits excluded. Reviews of each distribution concluded that all distributions types fitted the data reasonably well.

Following this, the results from the distributions used were then averaged and used in calculating the average values and 95% confidence limits. These averages were then used to calculate a representative ratio of the respective return period annual maximum daily unit streamflow to the index flood (e.g., 200-year/2-year). For the present application, the average instantaneous/daily (I/D) ratio using all paired observations of instantaneous and daily peak streamflows for each hydrometric station was calculated.
4.4.5 Hydrological Uncertainty

Uncertainty in the design streamflow estimates derives from possible errors in the raw peak streamflow hydrometric data (associated primarily with station location and rating curves), differences in the value of the data from each station due to differences in the length and period of record, and possible errors due to the nature of the hydrometric station (manual or recording). Furthermore, while an attempt was made to account for major differences in location, elevation, and aspect for each Reach, differences between the areas represented by the hydrometric stations exist for these factors and others (such as forested area, degree of land-use development, soils, history of forest fire, and geology).

To account for uncertainty within the design streamflow estimates, a one standard error (68%) confidence interval is provided around the mean streamflow estimate. The true value of the peak instantaneous and mean daily maximum streamflows are estimated to fall within the upper and lower confidence limits 68% of the time. Standard errors in the peak instantaneous and mean daily maximum streamflows estimates are based on combined standard errors in the maximum unit daily streamflow, the I/D ratio, and the ratios of the n-year return period (e.g., n = 200-year) to the mean annual peak daily streamflow.

4.4.6 Design Streamflow Results

The design streamflow estimates for the Project Reaches in Peachland and Trepanier Creeks are identified in Table 4-2 (maximum daily) and Table 4-3 (peak instantaneous). Watershed areas were calculated using TRIM and GIS mapping datasets. The design streamflows were calculated for all Reaches and relevant return periods. As noted earlier, the upper confidence interval was adopted as the design value.

For the design streamflow estimates, the following assumptions were included:

- For Trepanier Creek at Reach 3, it was assumed that the history of flow releases from Brenda Mines and the diversion of a portion of MacDonald Creek into Peachland Creek did not significantly influence the mean daily maximum streamflow recorded by WSC 08NM041 for the available period of record. In addition, the unit streamflow recorded by WSC No. 08NM041 (watershed area = 177.1 km2) was assumed consistent at the Reach 3 point-of-interest (watershed area = 179.4 km2)\(^3\).

- For Trepanier Creek at Reach 2, the same assumptions applied to Reach 3 were considered. Similarly, the unit streamflow recorded by WSC 08NM041 was assumed consistent at the Reach 3 point-of-interest (watershed area = 252.7 km2). In addition, the design streamflows were estimated to the apex of alluvial fan only, as limited additional inflow occurs across the fan.

- For Peachland Creek at Reach 1, it was assumed that the MacDonald Creek diversion into upper Peachland Creek is no longer operational. AE (2019) reported that the District of Peachland stopped using the diversion in 2009. Also, it was assumed that the unit streamflow recorded by WSC No. 08NM134 (drainage area = 34.7 km2) was consistent at the Reach 1 point-of-interest (drainage area = 147.3 km2). In addition, the design streamflows were estimated to the apex of alluvial fan only, as limited additional inflow occurs across the fan. Lastly, it was assumed that during design streamflows there is limited reservoir attenuation by Glen and Peachland Reservoirs.

\(^3\) The drainage areas for Trepanier Creek do not consider the portion of Brenda Mines within the watershed (i.e., 6.8 km2). Brenda Mines captures all water on site and releases at designated times; therefore, a portion of the natural watershed has been removed.
Table 4-2
Maximum Daily Flow Estimates

<table>
<thead>
<tr>
<th>Flow</th>
<th>Hydrological Return Period (Years)</th>
<th>Annual Exceedance Probability (AEP)</th>
<th>Peachland Creek Reach 1 (m³/s)</th>
<th>Trepanier Creek Reach 2 (m³/s)</th>
<th>Trepanier Creek Reach 3 (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₅</td>
<td>5</td>
<td>20%</td>
<td>12.2</td>
<td>20.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Q₁₀</td>
<td>10</td>
<td>10%</td>
<td>14.5</td>
<td>24.2</td>
<td>17.2</td>
</tr>
<tr>
<td>Q₂₀</td>
<td>20</td>
<td>5%</td>
<td>16.6</td>
<td>27.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Q₅₀</td>
<td>50</td>
<td>2%</td>
<td>19.2</td>
<td>32.0</td>
<td>22.7</td>
</tr>
<tr>
<td>Q₁₀₀</td>
<td>100</td>
<td>1%</td>
<td>21.1</td>
<td>35.1</td>
<td>24.9</td>
</tr>
<tr>
<td>Q₂₀₀</td>
<td>200</td>
<td>0.5%</td>
<td>22.9</td>
<td>38.1</td>
<td>27.1</td>
</tr>
</tbody>
</table>

Table 4-3
Peak Instantaneous Flow Estimates

<table>
<thead>
<tr>
<th>Flow</th>
<th>Hydrological Return Period (Years)</th>
<th>Annual Exceedance Probability (AEP)</th>
<th>Peachland Creek Reach 1 (m³/s)</th>
<th>Trepanier Creek Reach 2 (m³/s)</th>
<th>Trepanier Creek Reach 3 (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₅</td>
<td>5</td>
<td>20%</td>
<td>13.8</td>
<td>23.1</td>
<td>16.4</td>
</tr>
<tr>
<td>Q₁₀</td>
<td>10</td>
<td>10%</td>
<td>16.4</td>
<td>27.3</td>
<td>19.4</td>
</tr>
<tr>
<td>Q₂₀</td>
<td>20</td>
<td>5%</td>
<td>18.8</td>
<td>30.9</td>
<td>21.9</td>
</tr>
<tr>
<td>Q₅₀</td>
<td>50</td>
<td>2%</td>
<td>21.8</td>
<td>35.9</td>
<td>25.5</td>
</tr>
<tr>
<td>Q₁₀₀</td>
<td>100</td>
<td>1%</td>
<td>23.9</td>
<td>39.4</td>
<td>28.0</td>
</tr>
<tr>
<td>Q₂₀₀</td>
<td>200</td>
<td>0.5%</td>
<td>25.9</td>
<td>42.8</td>
<td>30.4</td>
</tr>
</tbody>
</table>

4.4.7 Okanagan Lake Elevation

Okanagan Lake is the receiving water body for Peachland and Trepanier Creeks. The lake elevation is the downstream boundary condition for the hydraulic models at Reach 1 and Reach 2. Statistical analysis was completed to estimate various lake elevations at WSC No. 08NM083 (Okanagan Lake at Kelowna, Table 4-4). Various statistical distributions were analyzed using HEC-SSP software (US ACE 2019).

Table 4-4
WSC Hydrometric Station on Okanagan Lake

<table>
<thead>
<tr>
<th>Station</th>
<th>Name</th>
<th>Period of Record</th>
<th>No. Years</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08NM083</td>
<td>Okanagan Lake at Kelowna</td>
<td>1943-2019</td>
<td>77</td>
<td>5,980</td>
</tr>
</tbody>
</table>

It is noted that there is an ongoing OBWB project for Okanagan Mainstem Flood Mapping. One of the anticipated outcomes of the OBWB project is a detailed analysis of Okanagan Lake water elevations and flood mapping along foreshore areas. At the time of writing this report the OBWB project is not complete. Therefore, statistical analysis of historical lake elevations completed herein was considered suitable for the Project. The same statistical return periods as the design streamflows were applied in the Project for lake elevations (i.e., 5-, 10-, 20-, 50-, 100-, and 200-year).
Okanagan Lake water elevations have been recorded for 77 years at WSC 08NM083. This is considered a long record compared to most gauges in the Okanagan Basin. The historical daily data is presented in Figure 4-2 as an elevation duration curve. This shows that the lake elevation has fluctuated by 1.87 m over this period. It is noted that the lake level and outflows are regulated at the Okanagan Lake Dam in Penticton. The minimum and maximum lake elevations are 341.37 m and 343.25 m, respectively (CGVD1928). The median lake elevation is 341.8 m (CGVD1928).

Figure 4-2
Elevation Duration Curve for Okanagan Lake (WSC 08NM083)

The maximum recorded lake elevation (343.25 m, CGVD1928) occurred between June 7-9, 2017. This was a high flood year in the Okanagan Basin and there were extensive flooding issues around the lake (AE 2017). It is noted that the current Flood Construction Level (FCL) for Okanagan Lake is 343.66 m (CGVD1928), although this elevation includes freeboard. The 2017 peak and the FCL are overlaid on the elevation duration curve (Figure 4-1).

The statistical frequency analysis chart is shown in Figure 4-3 for the LogPearson III distribution. It is noted that the analysis identified the 2017 peak elevation as a statistical high outlier. The results are listed in Table 4-5, which are the 95% confidence limit values that were selected from the analysis.
Table 4-5
Summary of Lake Elevations Applied to Reach 1 and Reach 2

<table>
<thead>
<tr>
<th>Lake Elevation</th>
<th>Hydrological Return Period (Years)</th>
<th>Annual Exceedance Probability (AEP)</th>
<th>Estimated Value (m) – CGVD1928</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_5</td>
<td>5</td>
<td>20%</td>
<td>342.66</td>
</tr>
<tr>
<td>E_{10}</td>
<td>10</td>
<td>10%</td>
<td>342.80</td>
</tr>
<tr>
<td>E_{20}</td>
<td>20</td>
<td>5%</td>
<td>342.92</td>
</tr>
<tr>
<td>E_{50}</td>
<td>50</td>
<td>2%</td>
<td>343.06</td>
</tr>
<tr>
<td>E_{100}</td>
<td>100</td>
<td>1%</td>
<td>343.16</td>
</tr>
<tr>
<td>E_{200}</td>
<td>200</td>
<td>0.5%</td>
<td>343.25</td>
</tr>
</tbody>
</table>

Figure 4-3
Frequency Analysis Chart for Okanagan Lake WSC 08NM083 (CGVD1928)
4.5 **Hydraulic Analysis**

4.5.1 **Model Build**

Hydraulic analysis was completed using GeoHEC-RAS software from CivilGeo and HEC-RAS software from the US Army Corps of Engineers. Model Project files are compatible with both software packages. The hydraulic models were built using:

- 2018 LiDAR digital elevation model (DEM) (Section 4.3).
- Site surveys (and vertical adjustments noted in Section 4.3).
- Bridge crossing information:
 - Highway 97 at Peachland Creek (single span steel bridge)
 - Highway 97 at Trepanier Creek (multi-span concrete bridge)
 - Renfrew Road (metal arch culvert)
 - Beach Avenue (single span concrete bridge)
- Weir information for Trepanier Creek Reach 3.
 - The adjustable stop logs were set at the elevation observed on September 27, 2019.
- Design streamflows from hydrological analysis (Section 4.4)
 - Maximum daily streamflows
 - Peak instantaneous streamflows
- Surface roughness (Manning’s n)
 - $n = 0.05$ for main channels
 - $n = 0.10$ for floodplains
- Upstream and downstream boundary conditions
 - Upstream: Normal depth associated with design streamflow and slope of energy grade line (EGL)
 - Downstream Reach 1 and Reach 2: Okanagan Lake water elevations
 - Downstream Reach 3: Normal depth

Model schematic images are presented in Figures 4-4 to 4-6. These show the LiDAR data with hillshading topography and the model elements (e.g., channel and cross sections). The alluvial fans on Peachland and Trepanier Creek are visible in the hillshading topography (Reach 1 and 2, respectively). These also show the model cross-sections and the cross-section station number, which is the distance (in units of m) along the channel alignment.
Figure 4-5
GeoHEC-RAS Model Schematic for Trepanier Creek Reach 2
Figure 4-6
GeoHEC-RAS Model Schematic for Trepanier Creek Reach 3
4.5.2 Model Scenarios

The hydraulic simulations were performed using steady-state flow rates under sub-critical flow conditions. For the purposes of the Project, 11 hydraulic model scenarios were analyzed for Reach 1 and Reach 2. Furthermore, each scenario was modelled under design streamflow conditions (peak instantaneous and maximum daily). These scenarios are listed in Table 4-6.

Scenarios 1 to 6 include a 5-year lake elevation as the downstream boundary condition with the full range of design streamflows. The 5-year return period lake elevation was selected as a reasonable boundary condition for the range of design streamflows. Okanagan Lake outflows and elevations are regulated, and the maximum lake elevations have typically occurred later than peak freshet in Peachland and Trepanier Creeks.

Scenarios 7 to 11 include a 5-year design streamflow with the full range of lake elevations. The objective of running multiple scenarios is to identify the critical factor for flood conditions. However, it is noted that the flood mapping is provided for the 20-year and 200-year return periods for the Project.

Table 4-6
Summary of Hydraulic Model Scenarios for Reach 1 and Reach 2

<table>
<thead>
<tr>
<th>Scenario No.</th>
<th>Design Streamflow and Lake Elevation</th>
<th>Scenario No.</th>
<th>Design Streamflow and Lake Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q({200}) – E({5})</td>
<td>7</td>
<td>E({200}) – Q({5})</td>
</tr>
<tr>
<td>2</td>
<td>Q({100}) – E({5})</td>
<td>8</td>
<td>E({100}) – Q({5})</td>
</tr>
<tr>
<td>3</td>
<td>Q({50}) – E({5})</td>
<td>9</td>
<td>E({50}) – Q({5})</td>
</tr>
<tr>
<td>4</td>
<td>Q({20}) – E({5})</td>
<td>10</td>
<td>E({20}) – Q({5})</td>
</tr>
<tr>
<td>5</td>
<td>Q({10}) – E({5})</td>
<td>11</td>
<td>E({10}) – Q({5})</td>
</tr>
<tr>
<td>6</td>
<td>Q({5}) – E({5})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reach 3 does not include Okanagan Lake as a boundary condition. Therefore, only six model scenarios were completed on Reach 3, which correspond to the design streamflows. These scenarios are listed in Table 4-7. It is noted that all modelling of Reach 3 was completed with stop logs at the elevation observed and surveyed in the field by AE (Figure 4-7).

Table 4-7
Summary of Hydraulic Model Scenarios for Trepanier Creek Reach 3

<table>
<thead>
<tr>
<th>Scenario No.</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Q(_{200})</td>
</tr>
<tr>
<td>13</td>
<td>Q(_{100})</td>
</tr>
<tr>
<td>14</td>
<td>Q(_{50})</td>
</tr>
<tr>
<td>15</td>
<td>Q(_{20})</td>
</tr>
<tr>
<td>16</td>
<td>Q(_{10})</td>
</tr>
<tr>
<td>17</td>
<td>Q(_{5})</td>
</tr>
</tbody>
</table>
4.5.3 Model Validation

In the absence of site-specific streamflow and water level data, model calibrations were not possible. The models were validated by analyzing water surface profiles and other hydraulic characteristics at each site. Model parameters (e.g., Manning’s n and boundary conditions) were increased and decreased to observe the sensitivity of adjustment. Final model parameters were selected based on this analysis, experience with similar sites, and with comparison to available hydraulic literature.

4.5.4 Flood and Channel Conditions

Peachland and Trepanier Creeks are mountainous streams and there are dam structures in each watershed. They are also mobile bed systems that have naturally occurring sediment transport processes, as evidenced by the formation of alluvial fans at the outlet of Reaches 1 and 2. Thus, there are conditions that could affect flood events and these are discussed below.

One of these conditions is the potential for debris floods or debris flows. An assessment of these hazards was outside the scope of work for the Project. However, it must be noted that these types of events have an influence on flood magnitude. When a debris flood or debris flow event occurs, water entrains debris and the result is a greater
volumetric flow rate that is highly erosive. These events typically cause significant channel alterations and deposit a large volume of material on the alluvial fan. The Project only modelled ‘clear flood’ conditions without any blockages or debris in the channels.

Another condition is related to the presence of upland storage dams in the watersheds. There is potential for dam failures that could lead to unnaturally high streamflows. The impacts from dam failures and the degree of flood inundation is typically far greater compared to ‘clear flood’ conditions. Dam breach analysis and resulting flood inundation were not considered in the Project; however, it is noted that the District of Peachland is currently completing this work with Urban Systems Ltd.

The last condition is related to the channel bed stability. Peachland and Trepanier Creeks are alluvial channels with mobile beds. Sediment moves and stream systems make adjustments as new sediment is replenished from the watershed. This is a complex geomorphological process and these types of streams are continually changing. Sediment yield studies were not completed in the Project and stable channels were assumed in the hydraulic models.

4.5.5 Freeboard

Each model scenario listed in Section 4.5.2 was analyzed with the design streamflows to confirm which flood profile (i.e., hydraulic grade line) is higher when a freeboard height is added. Freeboard is a vertical distance that accounts for hydrotechnical uncertainties, and flood and channel conditions such as those described in Section 3.7. Freeboard is added to hydraulic model results for the purposes of inundation mapping. Flood maps were prepared for the governing condition for the 20-year and 200-year hydrological return periods. The governing condition is the highest flood profile (with freeboard included) when comparing the maximum daily streamflow with the peak instantaneous streamflow. The following freeboard was considered in generating the flood maps (Section 5):

- **No Freeboard** – Provides estimate of flood profiles and inundation extents (modelled results).
- **Minimum Freeboard** – Amount for uncertainties; which is the highest of the following:
 - Maximum daily streamflow + 0.6 m freeboard, or
 - Peak instantaneous streamflow + 0.3 m freeboard – additional amount for sedimentation and channel conditions.
- **Additional Freeboard** – Amount for uncertainties, plus additional amount for sedimentation, flood and channel conditions; which is the highest of the following:
 - Maximum daily streamflow + 0.9 m freeboard, or
 - Peak instantaneous streamflow + 0.6 m freeboard

Based on the flood profile comparison from the hydraulic results, the maximum daily streamflow plus freeboard was the governing condition for all three Reaches.

4.5.6 Reach 1 Hydraulic Results

The model results show that the Peachland Creek channel along the alluvial fan generally has adequate hydraulic capacity for the 20-year and 200-year design streamflows (excluding freeboard). However, the following results are important to consider for Reach 1:

- The Highway 97 bridge crossing passes the design streamflows, but the bridge freeboard (0.69 m and 0.49 m, respectively) is less than MoTI design standards for highways (typically 1.5 m).
• The Renfrew Road arch culvert marginally passes the design streamflows. The 200-year design streamflow is backwatering upstream of the road embankment and this could lead to flood-related problems.
• The first trail bridge in Hardy Falls Park does not have capacity for the design streamflows. It is expected that the bridge crossing would be adversely impacted by these flood conditions. As noted in Section 3.3.1, this area was impacted by recent flooding.

4.5.7 Reach 2 Hydraulic Results

The model results show that the Trepanier Creek channel along the alluvial fan has out-of-channel flooding for the 20-year and 200-year design streamflows, which extends onto the following floodplain areas:

• Peachland Elementary School.
• Mobile home properties at 5432 Chidley Road.
• 5481 Clements Crescent.
• 5407/5409 and 5415 Clements Crescent.
• 5501 Todd Road.
• Multiple properties on the Butler Creek cul-de-sac.
• Portions of the roadway areas on Clements Crescent, Todd Road, and Beach Avenue.

In addition to the above, it is noted that the Beach Avenue bridge crossing does not have adequate capacity to pass the 200-year design streamflow. It is expected that the bridge crossing would be adversely impacted by these flood conditions. The bridge crossing has marginal capacity to pass the 20-year design streamflow (with almost zero freeboard).

When freeboard is added to the flood profiles there is extensive flooding on the alluvial fan.

4.5.8 Reach 3 Hydraulic Results

The model results show that the Trepanier Creek channel along the District of Peachland water intake site has out-of-channel flooding for the 20-year and 200-year design streamflows. The settling ponds are inundated for both scenarios. These results are specific to the elevation of the weir observed on September 27, 2019.

It is noted that the adjustable stop logs at the weir govern the water elevation in the channel adjacent to the settling ponds. The District of Peachland can raise or lower the stop logs. This provides operational control, so staff could remove stop logs prior to freshet. This would increase the hydraulic capacity in the channel.

When freeboard is added to the flood profiles, the flooding extents are marginally larger.
5 FLOOD MAPPING

Flood inundation maps are presented in the following set of figures (Table 5-1). These maps show the estimate of maximum inundation extents for the 20-year and 200-year hydrological return periods.

Table 5-1
List of Flood Maps

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Flood Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Peachland Creek Reach 1</td>
</tr>
<tr>
<td>5-1</td>
<td>20-Year – No Freeboard</td>
</tr>
<tr>
<td>5-2</td>
<td>20-Year – Minimum and Additional Freeboard</td>
</tr>
<tr>
<td>5-3</td>
<td>200-Year – No Freeboard</td>
</tr>
<tr>
<td>5-4</td>
<td>200-Year – Minimum and Additional Freeboard</td>
</tr>
<tr>
<td>5-5</td>
<td>Trepanier Creek Reach 2</td>
</tr>
<tr>
<td>5-5</td>
<td>20-Year – No Freeboard</td>
</tr>
<tr>
<td>5-6</td>
<td>20-Year – Minimum and Additional Freeboard</td>
</tr>
<tr>
<td>5-7</td>
<td>200-Year – No Freeboard</td>
</tr>
<tr>
<td>5-8</td>
<td>200-Year – Minimum and Additional Freeboard</td>
</tr>
<tr>
<td>5-9</td>
<td>Trepanier Creek Reach 3</td>
</tr>
<tr>
<td>5-9</td>
<td>20-Year – No Freeboard</td>
</tr>
<tr>
<td>5-10</td>
<td>20-Year – Minimum and Additional Freeboard</td>
</tr>
<tr>
<td>5-11</td>
<td>200-Year – No Freeboard</td>
</tr>
<tr>
<td>5-12</td>
<td>200-Year – Minimum and Additional Freeboard</td>
</tr>
</tbody>
</table>
FIGURE 5-1: PEACHLAND CREEK
REACH 1, 20-YEAR - NO FREEBOARD
RDCO
Peachland and Trepanier Creeks
Flood Mapping

- Peachland Creek
- Water Surface Elevation
- Cadastral Boundaries
- 20-Year Inundation Extent

Water Depth (m)
High: 2.33899
Low: 0.000213623

Upstream Extent of Project
Downstream Extent of Project

Renfrew Rd
Thorne Rd
Hardy St
Highway 97
343
346
348
347
350
345
351
344
349
!
FIGURE 5-2: PEACHLAND CREEK
REACH 1, 20-YEAR - MINIMUM AND ADDITIONAL FREEBOARD

RDCO
Peachland and Trepanier Creeks Flood Mapping
FIGURE 5-3: PEACHLAND CREEK REACH 1, 200-YEAR - NO FREEBOARD

Water Depth (m)

High: 3.01215
Low: 0.00106812

Peachland Creek
Water Surface Elevation
Cadastral Boundaries
200-Year Inundation Extent

0 50 Meters

Upstream Extent of Project

Downstream Extent of Project

Highway 97
Renfrew Rd
Thorne Rd
Hardy St

RDCO
PROJECT NO.: 2019-2671
DATE: December 2019
DRAWN BY: DA

Okanagan Lake

Peachland and Trepanier Creeks Flood Mapping
FIGURE 5-4: PEACHLAND CREEK REACH 1, 200-YEAR - MINIMUM AND ADDITIONAL FREEBOARD

RDCO
Peachland and Trepanier Creeks Flood Mapping

PROJECT NO.: 2019-2671
DATE: December 2019
DRAWN BY: DA

- Peachland Creek
- Cadastral Boundaries
- Normal Freeboard - 0.6m
- Additional Freeboard - 0.9m

Upstream Extent of Project
Downstream Extent of Project

Peachland Creek

Normal Freeboard - 0.6m
Additional Freeboard - 0.9m
FIGURE 5-6: TREPANIER CREEK REACH 2, 20-YEAR - MINIMUM AND ADDITIONAL FREEBOARD

RDCO
Peachland and Trepanier Creeks Flood Mapping

PROJECT NO.: 2019-2671
DATE: Dec. 2019
DRAWN BY: DA

- Trepanier Creek
- Cadastral boundaries
- Normal Freeboard - 0.6m
- Additional Freeboard - 0.9m

Upstream Extent of Project
Downstream Extent of Project

50 Meters
FIGURE 5-8: TREPANIER CREEK
REACH 2, 200-YEAR - MINIMUM AND ADDITIONAL FREEBOARD

RDCO
Peachland and Trepanier Creeks Flood Mapping
FIGURE 5-9: TREPANIER CREEK REACH 3, 20 YEAR - NO FREEBOARD

RDCO
Peachland and Trepanier Creeks
Flood Mapping

Water Depth (m)
High: 2.55707
Low: 0.0

Trepanier Creek
Water Surface Elevation
20-Year Inundation Extent

Upstream Extent of Project

Downstream Extent of Project

PROJECT NO.: 2019-2671
DATE: December 2019
DRAWN BY: DA
FIGURE 5-10: TREPANIER CREEK REACH 3, 20-YEAR - MINIMUM AND ADDITIONAL FREEBOARD

Peachland and Trepanier Creeks Flood Mapping
FIGURE 5-11: TREPANIER CREEK REACH 3, 200 YEAR - NO FREEBOARD

RDCO
Peachland and Trepanier Creeks Flood Mapping

PROJECT NO.: 2019-2671
DATE: December 2019
DRAWN BY: DA

Water Depth (m)
High: 2.82025
Low: 0.0

200-Year Inundation Extent

Upstream Extent of Project

Downstream Extent of Project
FIGURE 5-12: TREPANIER CREEK REACH 3, 200-YEAR - MINIMUM AND ADDITIONAL FREEBOARD

- Normal Freeboard - 0.6m
- Additional Freeboard - 0.9m

Upstream Extent of Project

Downstream Extent of Project
CONCLUSIONS

Three stream channel Reaches on Peachland and Trepanier Creeks were assessed in the Project:

1. Reach 1: Peachland Creek (approximately 400 m long reach to the mouth at Okanagan Lake);
2. Reach 2: Trepanier Creek (approximately 900 m long reach to the mouth at Okanagan Lake); and
3. Reach 3: Trepanier Creek (approximately 600 m long reach adjacent to the District of Peachland water intake).

Field assessments and surveying were completed to supplement available data and information. Hydrological and hydraulic analyses were completed for the Project. The main Project conclusions are highlighted below:

- Peachland and Trepanier Creeks are both Community Watersheds draining portions of the western side of the Okanagan Lake valley.
- These watersheds are snowmelt dominated hydrological systems and are expected to have peak streamflows occurring in April or May.
- Reach 1 and Reach 2 are on alluvial fans of Peachland and Trepanier Creek, respectively.
 - These alluvial fans have been developed over time and currently have mixed land use.
- Hydrological analysis was completed to estimate design streamflows for each channel Reach.
- Hydraulic models were built for each channel Reach using OBWB LiDAR data and field survey data collected by AE for the Project.
- Hydraulic analysis was completed to estimate flood conditions from design streamflows.
- Flood inundation maps were prepared for the estimated 20-year and 200-year design streamflows at each Reach (modelled flood extents with no freeboard).
- Flood inundation maps were also prepared for the estimated 20-year and 200-year design streamflows with freeboard considerations at each Reach (amount for uncertainties, sedimentation, and channel conditions).
- Based on the hydraulic model results, all three Project Reaches are subject to flooding.
 - **Peachland Creek Reach 1** generally has adequate hydraulic capacity for the design streamflows. However, the bridge crossings at Renfrew Road and Highway 97 could be subject to flood-related damage. When freeboard is added to the estimated flood extents there is out-of-channel flooding and inundation in the mobile home property north of the channel (6663 Highway 97).
 - **Trepanier Creek Reach 2** has out-of-channel flooding. The 200-year design streamflow could inundate at least 7 locations adjacent to the channel. The bridge crossing at Beach Avenue is also at risk of flood-related damage. When freeboard is added to the estimated flood extents there is additional out-of-channel flooding and extensive inundation at numerous locations.
 - **Trepanier Creek Reach 3** has out-of-channel flooding. The District of Peachland has operational control of the weir structure and this could influence results. If stop logs are lowered or removed, the estimated flood extents could be lowered. When freeboard is added to the estimated flood extents there is extensive inundation at Reach 3.
- The flood inundation maps are intended to help the RDCO and District of Peachland with floodplain management planning. The Project could be expanded to include analysis of flood hazards and flood risks.
- The **Flood Mapping Assurance Statement** is included in Appendix A.
7 CLOSURE

This report was prepared for the Regional District of Central Okanagan to prepare flood mapping for selected Reaches of Peachland and Trepanier Creeks.

The services provided by Associated Engineering (B.C.) Ltd. in the preparation of this report were conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No other warranty expressed or implied is made.

Respectfully submitted,
Associated Engineering (B.C.) Ltd.

Geoffrey Cahill, P.Eng.
Water Resources Engineer

John van der Eerden, M.Eng., P.Eng.
Vice President, Water Resources

DEC. 20/2019

[Signature]

[Stamp]
REFERENCES

Clarke Geoscience Ltd. 2014. Terms of Reference for a Regional Floodplain Management Framework for the Regional District of Central Okanagan.

APPENDIX A - FLOOD MAPPING ASSURANCE STATEMENT
APPENDIX A: FLOOD MAPPING ASSURANCE STATEMENT

To: The Client

Date: 20-DEC-2019

Regional District of Central Okanagan
1450 KLO Road
Kelowna, BC, V1W 3Z4

Flood Mapping Project:
Peachland and Trepanier Creeks

The undersigned hereby gives assurance that he/she is an APEGBC registered professional and the Qualified Professional for the project identified above.

I have signed, sealed and dated the attached report in accordance with the APEGBC Professional Practice Guidelines – Flood Mapping in BC. The report supports and accurately reflects the assurances made in this Assurance Statement.

I have completed the following activities:

(Check the applicable items)

<table>
<thead>
<tr>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Reviewed the relevant provincial legislation and local government regulations, policies, and floodplain bylaws</td>
</tr>
<tr>
<td>✔ Reviewed available and relevant background information, documentation and data</td>
</tr>
<tr>
<td>✔ Visited the site and reviewed the conditions in the field that may be relevant</td>
</tr>
<tr>
<td>✔ Considered the need for, and scale of, investigations that address future land use changes and climate change</td>
</tr>
<tr>
<td>✔ Developed and executed the flood mapping in accordance with the criteria established by the client</td>
</tr>
<tr>
<td>✔ Addressed any significant comments arising from internal or peer reviews</td>
</tr>
<tr>
<td>✔ Prepared a flood mapping report along with the accompanying digital information</td>
</tr>
</tbody>
</table>
I hereby give assurance that the attached flood mapping report and supporting digital documentation have been produced in accordance with the APEGBC Professional Practice Guidelines – Flood Mapping in BC.

Geoffrey Cahill
Name [print]

Signature

610 - 1632 Dickson Ave.
Address [print]

Kelowna, BC

V1Y 7T2

(250) 763-3638
Telephone

cahillg@ae.ca
(email)

Date

20-DEC-2019

If the APEGBC Qualified Professional is a member of a firm, complete the following:

I am a member of the firm ASSOCIATED ENGINEERING (B.C.) LTD., and I sign this letter on behalf of the firm.

(Print name of firm)